Other methods for efficient tomography Focus on quantum tomography (special issue): K. Banaszek, M. Cramer, and D. Gross, New J. Phys. 15, 125020 (2013). Compressed sensing: states with low rank Quantum state tomography via compressed sensing: D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Phys. Rev. Lett. 105, 150401 (2010). (main paper on tomography based on compressed sensing) Continuous-variable quantum compressed sensing: M. Ohliger, V. Nesme, D. Gross, Y.-K. Liu, and J. Eisert, arXiv:1111.0853. Rank-based model selection for multiple ions quantum tomography M. Guta, T. Kypraios, and I. Dryden, New J. Phys. 14, 105002 (2012). Efficient and feasible state tomography of quantum many-body systems M. Ohliger, V. Nesme, and J. Eisert, New J. Phys. 15, 015024 (2013). Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity, and Efficient Estimators: S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, New J. Phys. 14, 095022 (2012). Quantum state tomography by continuous measurement and compressed sensing A. Smith, C.A. Riofrío, B. E. Anderson, H. Sosa-Martinez, I. H. Deutsch, and P. S. Jessen, Phys. Rev. A 87, 030102(R) (2013). Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems: A. Carpentier, J. Eisert, D. Gross, R. Nickl, arxiv:1504.03234. Statistically efficient tomography of low rank states with incomplete measurements A. Acharya, T. Kypraios, and M. Guta, arxiv:1510.03229. Improving compressed sensing with the diamond norm Matrix product state (MPS) tomography: spin chain states Efficient quantum state tomography: M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, Nat. Commun. 1, 149 (2010). (main MPS tomography paper) Scalable reconstruction of density matrices: T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 111, 020401 (2013); arXiv:1207.0358. (mixed states, applied to the experimental data of the eight-ion experiment of the Blatt group) Practical learning method for multi-scale entangled states: O. Landon-Cardinal and D. Poulin, New J. Phys. 14, 085004 (2012). (extension to 2D) A scalable maximum likelihood method for quantum state tomography: T. Baumgratz, A. Nüßeler, M. Cramer, and M. B. Plenio, New J. Phys. 15, 125004 (2013); (realization for mixed states) Quantum field tomography: A. Steffens, C. A. Riofrío, R. Hübener, J. Eisert, arXiv:1406.3631. A. Steffens, M. Friesdorf, .T Langen, B. Rauer, T. Schweigler, R. Hübener, J. Schmiedmayer, C.A. Riofrío, and J. Eisert, arXiv:1406.3632. Continuous matrix product state tomography of quantum transport experiments: J. Eisert, D. Gross, arxiv:1504.04194 Further methods Information criteria for efficient quantum state estimation: Yu.I.Bogdanov, G. Brida, M. Genovese, S.P.Kulik, E.V.Moreva, and A.P.Shurupov, Phys. Rev. Lett. 105, 010404 (2010); arXiv:1002.3477 |