Optimal bound on the quantum Fisher information

Based on few initial expectation values

Iagoba Apellaniz 1, Matthias Kleinmann 1, Otfried Gühne 2, & Géza Tóth 1,3,4

iagoba.apellaniz@gmail.com

1Department of Theoretical Physics, University of the Basque Country, Spain
2Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Germany
3IKERBASQUE, Basque Foundation for Science, Spain
4Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary

Recent Advances in Quantum Metrology; Warsaw - 2016
Outline

1 Introduction and Motivation

2 QFI based on expectation values: Are they optimal?
 - Optimisation problem

3 Case study
 - Fidelities
 - Spin-squeezed states
 - Unpolarised Dicke states

4 Conclusion and outlook
● Many inequalities have been proposed to lower bound the quantum Fisher Information.

Bounds for qFI

\[
F_Q[\rho, J_z] \geq \frac{\langle J_x \rangle^2}{(\Delta J_y)^2}, \quad F_Q[\rho, J_y] \geq \beta^{-2} \frac{\langle J_x^2 + J_z^2 \rangle}{(\Delta J_z)^2 + \frac{1}{4}},
\]

\[
F_Q[\rho, J_z] \geq \frac{4(\langle J_x^2 + J_y^2 \rangle)^2}{2\sqrt{(\Delta J_x^2)^2 (\Delta J_y^2)^2} + \langle J_x^2 \rangle - 2\langle J_y^2 \rangle (1 + \langle J_x^2 \rangle) + 6\langle J_y J_x J_x J_y \rangle}
\]

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]
[Z. Zhang & L.-M. Duan, NJP 16, 103037 (2014)]
- Many inequalities have been proposed to lower bound the quantum Fisher Information.

- For large systems, we only have a couple of expectation values to characterise the state.
Many inequalities have been proposed to lower bound the quantum Fisher Information.

For large systems, we only have a couple of expectation values to characterise the state.
Many inequalities have been proposed to lower bound the quantum Fisher Information. For large systems, we only have a couple of expectation values to characterise the state.

The archetypical criteria that shows metrologically useful entanglement.

\[F_Q[\rho, J_z] \geq \frac{\langle J_x \rangle}{(\Delta J_z)^2} \]

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]
Many inequalities have been proposed to lower bound the quantum Fisher Information.

For large systems, we only have a couple of expectation values to characterise the state.

The archetypical criteria that shows metrologically useful entanglement.

It is essential either to verify them or find new ones for different set of expectation values.
1 Introduction and Motivation

2 QFI based on expectation values: Are they optimal?
 - Optimisation problem

3 Case study
 - Fidelities
 - Spin-squeezed states
 - Unpolarised Dicke states

4 Conclusion and outlook
The non-trivial exercise of computing the qFI

Different forms of the qFI

\[
F_Q[\rho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_{\lambda} - p_{\gamma})^2}{p_\lambda + p_\gamma} |\langle \lambda | J_z | \gamma \rangle|^2
\]

Alternatively, as convex roof

\[
F_Q[\rho, J_z] = \min_{\{p_k, |\psi_k\rangle\}} 4 \sum_k p_k (\Delta J_z)_{|\psi_k\rangle}^2
\]

[G. Tóth & D. Petz, PRA 87, 032324 (2013)]
[S. Yu, arXiv:1302.5311]
The non-trivial exercise of computing the qFl

- Different forms of the qFl

\[
F_Q[\rho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(p_\lambda - p_\gamma)^2}{p_\lambda + p_\gamma} |\langle \lambda | J_z | \gamma \rangle|^2
\]

Alternatively, as convex roof

\[
F_Q[\rho, J_z] = \min \{ p_k, |\Psi_k\rangle \} 4 \sum_k p_k (\Delta J_z |_{\Psi_k})^2
\]

- For pure states it’s extremely simple

\[
F_Q[\rho, J_z] = 4 (\Delta J_z)^2
\]

[G. Tóth & D. Petz, PRA 87, 032324 (2013)]
[S. Yu, arXiv:1302.5311]
Optimisation based on the Legendre Transform

- When \(g(\varrho) \) is a *convex roof*

\[
g(\varrho) \geq B(w := \text{Tr}[\varrho W]) = \sup_r \left(rw - \sup_{|\psi\rangle} [r \langle W \rangle - g(|\psi\rangle)] \right).
\]

Optimisation for the qFI

The *simplicity* of qFI for pure states leads to

\[\mathcal{F}(w) = \sup_r \left(rw - \sup_{\mu} \left[\lambda_{\text{max}}(rW - 4(J_z - \mu)^2) \right] \right). \]

For more parameters

\[\mathcal{F}(w) = \sup_r \left(r \cdot w - \sup_{\mu} \left[\lambda_{\text{max}}(r \cdot W - 4(J_z - \mu)^2) \right] \right). \]

1 Introduction and Motivation

2 QFI based on expectation values: Are they optimal?
 • Optimisation problem

3 Case study
 • Fidelities
 • Spin-squeezed states
 • UnpolarisedDicke states

4 Conclusion and outlook
Measuring F_{GHZ} and F_{Dicke}
Measuring F_{GHZ} and F_{Dicke}

Measuring F_{GHZ} and F_{Dicke}

For fidelity of GHZ \implies analytic solution

$$\mathcal{F} = \Theta(F_{\text{GHZ}} - 0.5)(2F_{\text{GHZ}} - 1)^2 N^2$$
Measuring $\langle J_z \rangle$ and $(\Delta J_x)^2$ for Spin Squeezed States

- 3 operators $\{J_z, J_x, J_x^2\}$
Measuring $\langle J_z \rangle$ and $(\Delta J_x)^2$ for Spin Squeezed States

- 3 operators $\{J_z, J_x, J_x^2\}$
- Reducing one dimension of \mathcal{F} on the $\langle J_x \rangle$ direction

$$\mathcal{F} \geq \mathcal{F}(\langle J_x \rangle = 0)$$

$$\downarrow$$

$$\mathcal{F}(\langle J_z \rangle, (\Delta J_x)^2) := \mathcal{F}(\langle J_z \rangle, \langle J_x^2 \rangle)$$
Measuring $\langle J_z \rangle$ and $(\Delta J_x)^2$ for Spin Squeezed States

- 3 operators $\{J_z, J_x, J_x^2\}$
- Reducing one dimension of \mathcal{F} on the $\langle J_x \rangle$ direction

$$\mathcal{F} \geq \mathcal{F}(\langle J_x \rangle = 0)$$

$$\downarrow$$

$$\mathcal{F}(\langle J_z \rangle, (\Delta J_x)^2) := \mathcal{F}(\langle J_z \rangle, \langle J_x^2 \rangle)$$

- Pezze-Smerzi bound, $F_Q \geq \langle J_z \rangle^2 / (\Delta J_x)^2$, can be verified.
4-particle system

Left: For $(\Delta J_x)^2 < 1.5$ it almost coincides with the P-S bound $F_Q \geq \langle J_z \rangle^2 / (\Delta J_x)^2$. **Right:** The measurement of $\langle J_x^4 \rangle$ improves the bound.

Scaling the result for large systems

\[N = 2300 \quad \xi_s^2 = -8.2\text{dB} = 0.1514 \]
Scaling the result for large systems

\[N = 2300 \quad \xi_s^2 = -8.2\text{dB} = 0.1514 \]

- We choose

\[\langle J_z \rangle = 0.85 \frac{N}{2} \]
Scaling the result for large systems

\[N = 2300 \quad \xi_s^2 = -8.2\,\text{dB} = 0.1514 \]

- We choose \[\langle J_z \rangle = 0.85 \frac{N}{2} \]
- P-S bound results is \[\frac{F_Q}{N} \geq \frac{1}{\xi_s^2} = 6.605 \]
Starting from small systems, and assuming bosonic symmetry.

The results obtained with our method converge to P-S bound!
Metrology with unpolarised Dicke states

- 3 operators \(\{ J^2_x, J^2_y, J^2_z \} \); Experimental constraint:
 \[\langle J^2_x \rangle = \langle J^2_y \rangle. \]
3 operators $\{J_x^2, J_y^2, J_z^2\}$; Experimental constraint:

$$\langle J_x^2 \rangle = \langle J_y^2 \rangle.$$

For $\sum_i \langle J_i^2 \rangle = \frac{N}{2} (\frac{N}{2} + 1)$, i.e. bosonic symmetry, and 6-particle system:
Realistic characterisation of Dicke state

Experiment → [B. Lücke et al., PRL 112, 155304 (2014)]

\[N = 7900 \quad \langle J_z^2 \rangle = 112 \pm 31 \]

\[\langle J_x^2 \rangle = \langle J_y^2 \rangle = 6 \times 10^6 \pm 0.6 \times 10^6 \]

- For that large system, we start from small ones similar to the spin-squeezed states.
Numerical lower bound.

Similarly to the spin-squeezed states, the bound *converges quickly.*

We prove that for realistic cases *the optimisation is feasible.*
We prove that for realistic cases *the optimisation is feasible*. We used *our approach to verify* that the P-S bound is tight.
Conclusion and Outlook

1. We prove that for realistic cases *the optimisation is feasible*.
2. We used *our approach to verify* that the P-S bound is tight.
3. We have shown that the lower bounds can be *improved with extra constraints*.
Conclusion and Outlook

1. We prove that for realistic cases the optimisation is feasible.
2. We used our approach to verify that the P-S bound is tight.
3. We have shown that the lower bounds can be improved with extra constraints.
4. For large systems the optimisation method can be complemented with scaling considerations.
Conclusion and Outlook

1. We prove that for realistic cases *the optimisation is feasible*.

2. We used *our approach to verify* that the P-S bound is tight.

3. We have shown that the lower bounds can be *improved with extra constraints*.

4. For large systems the *optimisation method can be complemented* with scaling considerations.

5. The *method very versatile* and it can be used in many other situations.
Thank you for your attention!

Preprint → arXiv:1511.05203

Groups’ home pages
→ https://sites.google.com/site/gedentqopt
→ http://www.physik.uni-siegen.de/tqo/

iagoba matthias otfried géza