Detecting metrologically useful multiparticle entanglement of Dicke states

G. Tóth1,2,3 in collaboration with:

Theory: G. Vitagliano1, I. Apellaniz1,
M. Kleinmann1, I.L. Egusquiza1, O. Gühne4

Cold gas exp.: B. Lücke5, J. Peise5, J. Arlt5, L. Santos5, C. Klempt5

1Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain
2IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3Wigner Research Centre for Physics, Budapest, Hungary
4University of Siegen, Germany
5Leibniz Universität Hannover, Germany

LENS,
Firenze, 10 December 2015.
Why multipartite entanglement is important?

- Full tomography is not possible, we still have to say something meaningful.
- Claiming “entanglement” is not sufficient for many particles.
- Many experiments are aiming to create entangled states with many atoms.
- Only collective quantities can be measured.
Outline

1. Introduction and motivation

2. Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3. Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4. Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
A state is (fully) separable if it can be written as

$$\sum_k p_k \varrho_k^{(1)} \otimes \varrho_k^{(2)} \otimes ... \otimes \varrho_k^{(N)}.$$

If a state is not separable then it is entangled (Werner, 1989).

- Separable states remain separable under local operations. (“Local operations and classical communication”)
- Separable states can be created without real quantum interaction. They are the “boring” states.
A pure state is \textit{k-producible} if it can be written as

\[|\Phi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle \otimes |\Phi_3\rangle \otimes |\Phi_4\rangle \ldots \]

where \(|\Phi_i\rangle\) are states of at most \(k\) qubits.

A mixed state is \(k\)-producible, if it is a mixture of \(k\)-producible pure states.

[e.g., O. Gühne and GT, New J. Phys 2005.]

If a state is not \(k\)-producible, then it is at least \((k + 1)\)-particle entangled.

two-producible

three-producible
Outline

1 Introduction and motivation

2 Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3 Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
For spin-$\frac{1}{2}$ particles, we can measure the collective angular momentum operators:

\[J_l := \frac{1}{2} \sum_{k=1}^{N} \sigma_l^{(k)}, \]

where $l = x, y, z$ and $\sigma_l^{(k)}$ a Pauli spin matrices.

We can also measure the variances

\[(\Delta J_l)^2 := \langle J_l^2 \rangle - \langle J_l \rangle^2. \]
Outline

1 Introduction and motivation

2 Spin squeezing and entanglement
 • Entanglement
 • Collective measurements
 • The original spin-squeezing criterion
 • Generalized criteria for $j = \frac{1}{2}$

3 Spin squeezing for Dicke states
 • Entanglement detection close to Dicke states
 • Detection of multipartite entanglement close to Dicke states
 • Our conditions are stronger than the original conditions

4 Detecting metrologically useful entanglement
 • Basics of quantum metrology
 • Metrology with measuring $\langle J_z^2 \rangle$
 • Metrology with measuring any operator
The standard spin-squeezing criterion

The spin squeezing criteria for entanglement detection is

\[\xi_s^2 = N \frac{(\Delta J_z)^2}{\langle J_x \rangle^2 + \langle J_y \rangle^2}. \]

[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

- If \(\xi_s^2 < 1 \) then the state is entangled.
- States detected are like this:
Outline

1 Introduction and motivation

2 Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3 Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
Let us assume that for a system we know only

\[\vec{J} := (\langle J_x \rangle, \langle J_y \rangle, \langle J_z \rangle), \]
\[\vec{K} := (\langle J_x^2 \rangle, \langle J_y^2 \rangle, \langle J_z^2 \rangle). \]

Then any state violating the following inequalities is entangled:

\[\langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle \leq \frac{N(N+2)}{4}, \]
\[(\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 \geq \frac{N}{2}, \quad \text{(singlet)} \]
\[\langle J_k^2 \rangle + \langle J_l^2 \rangle \leq (N - 1)(\Delta J_m)^2 + \frac{N}{2}, \quad \text{(Dicke state)} \]
\[(N - 1) \left[(\Delta J_k)^2 + (\Delta J_l)^2 \right] \geq \langle J_m^2 \rangle + \frac{N(N-2)}{4}, \]

where \(k, l, m \) take all the possible permutations of \(x, y, z \).

Generalized spin squeezing criteria for $j = \frac{1}{2}$ II

- Separable states are in the polytope

- We set $\langle J_l \rangle = 0$ for $l = x, y, z$.
Spin squeezing criteria – Two-particle correlations

All quantities needed can be obtained with two-particle correlations

\[\langle J_l \rangle = N \langle j_l \otimes \mathbb{1} \rangle_{\rho_{2p}}; \quad \langle J^2_l \rangle = \frac{N}{4} + N(N - 1) \langle j_l \otimes j_l \rangle_{\rho_{2p}}. \]

- Here, the average 2-particle density matrix is defined as

\[\rho_{2p} = \frac{1}{N(N - 1)} \sum_{n \neq m} \rho_{mn}. \]

- Still, we can detect states with a separable \(\rho_{2p} \).

- Still, as we will see, we can even detect multipartite entanglement!
Outline

1 Introduction and motivation

2 Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for \(j = \frac{1}{2} \)

3 Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring \(\langle J_z^2 \rangle \)
 - Metrology with measuring any operator
Dicke states

- Symmetric Dicke states with $\langle J_z \rangle = 0$ (simply “Dicke states” in the following) are defined as

$$|D_N\rangle = \left(\frac{N}{N^2}\right)^{-\frac{1}{2}} \sum_k P_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}}\right).$$

- E.g., for four qubits they look like

$$|D_4\rangle = \frac{1}{\sqrt{6}} \left(|0011\rangle + |0101\rangle + |1001\rangle + |0110\rangle + |1010\rangle + |1100\rangle\right).$$

Dicke states are useful because they ...

- ... possess strong multipartite entanglement, like GHZ states.
 [GT, JOSAB 2007.]

- ... are optimal for quantum metrology, similarly to GHZ states.
 [Hyllus et al., PRA 2012; Lücke et al., Science 2011; GT, PRA 2012; GT and Apellaniz, JPHYSA, 2014.]

- ... are macroscopically entangled, like GHZ states.
 [Fröwis, Dür, PRL 2011]
Let us rewrite the third inequality

\[\langle J_k^2 \rangle + \langle J_i^2 \rangle - \frac{N}{2} \leq (N - 1)(\Delta J_m)^2. \]

It detects states close to Dicke states since

\[\langle J_x^2 + J_y^2 \rangle = \frac{N}{2} \left(\frac{N}{2} + 1 \right) = \text{max.}, \]

\[\langle J_z^2 \rangle = 0. \]
Outline

1. Introduction and motivation

2. Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3. Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4. Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
Multipartite entanglement in spin squeezing

- We consider pure k-producible states of the form
 \[|\Psi\rangle = \bigotimes_{i=1}^{M} |\psi_i\rangle, \]
 where $|\psi_i\rangle$ is the state of at most k qubits.

Extreme spin squeezing

The spin-squeezing criterion for k-producible states is

\[
(\Delta J_z)^2 \geq J_{\text{max}} F_k \frac{\sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2}}{J_{\text{max}}},
\]

where $J_{\text{max}} = \frac{N}{2}$ and we use the definition

\[
F_j(X) := \frac{1}{j} \min_{\langle jx \rangle = X} (\Delta j_z)^2.
\]

[Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001);
Multipartite entanglement around Dicke states

- Measure the same quantities as before

 \[(\Delta J_z)^2\]

 and

 \[\langle J_x^2 + J_y^2 \rangle.\]

- In contrast, for the original spin-squeezing criterion we measured
 \[(\Delta J_z)^2\] and \[\langle J_x \rangle^2 + \langle J_y \rangle^2.\]

Multipartite entanglement - Our condition

- Sørensen-Mølmer condition for k-producible states

$$(\Delta J_z)^2 \geq J_{\text{max}} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2}}{J_{\text{max}}} \right).$$

- Combine it with

$$\langle J_x^2 + J_y^2 \rangle \leq J_{\text{max}} \left(\frac{k}{2} + 1 \right) + \langle J_x \rangle^2 + \langle J_y \rangle^2,$$

which is true for pure k-producible states. (Remember, $J_{\text{max}} = \frac{N}{2}$.)

Condition for entanglement detection around Dicke states

$$(\Delta J_z)^2 \geq J_{\text{max}} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x^2 + J_y^2 \rangle - J_{\text{max}} \left(\frac{k}{2} + 1 \right)}}{J_{\text{max}}} \right).$$

Due to convexity properties of the expression, this is also valid to mixed separable states.
Concrete example

- \(N = 8000 \) particles, and \(J_{\text{eff}} = J_x^2 + J_y^2 \).
- **Red curve**: boundary for 28-particle entanglement.
- **Blue dashed line**: linear condition given in [L.-M. Duan, Phys. Rev. Lett. 107, 180502 (2011)].
- **Red dashed line**: tangent of our curve.
Outline

1. Introduction and motivation
2. Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$
3. Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions
4. Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
Consider spin squeezed states as ground states of

\[H(\Lambda) = J_z^2 - \Lambda J_x. \]

For \(\Lambda = \infty \), the ground state is fully polarized. For \(\Lambda = 0 \), it is the symmetric Dicke state.

Our condition vs. original condition for \(N=4000 \) and \(p=0.05 \)

Experimental results

- Bose-Einstein condensate, 8000 particles. 28-particle entanglement is detected.

Outline

1 Introduction and motivation

2 Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3 Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
Quantum metrology

Fundamental task in metrology

We have to estimate θ in the dynamics

$$U(\theta) = \exp(-iA\theta).$$
Measure an operator M to get the estimate θ. The precision is

$$(\Delta \theta)^2 = \frac{(\Delta M)^2}{\left| \frac{\partial}{\partial \theta} \langle M \rangle \right|^2}.$$
The quantum Fisher information

- Cramér-Rao bound on the precision of parameter estimation

\[(\Delta \theta)^2 \geq \frac{1}{F_Q[\varrho, A]}, \quad (\Delta \theta)^{-2} \leq F_Q[\varrho, A].\]

where \(F_Q[\varrho, A]\) is the quantum Fisher information.

- The quantum Fisher information is

\[F_Q[\varrho, A] = 2 \sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k | A | l \rangle|^2,\]

where \(\varrho = \sum_k \lambda_k |k\rangle\langle k|\).
The quantum Fisher information vs. entanglement

- For separable states
 \[F_Q[\rho, J_i] \leq N. \]

- For states with at most \(k \)-particle entanglement (\(k \) is divisor of \(N \))
 \[F_Q[\rho, J_i] \leq kN. \]

- Macroscopic superpositions (e.g, GHZ states, Dicke states)
 \[F_Q[\rho, J_i] \propto N^2 \]
1. Introduction and motivation

2. Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for \(j = \frac{1}{2} \)

3. Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4. Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring \(\langle J_Z^2 \rangle \)
 - Metrology with measuring any operator
For Dicke state
\[
\langle J_l \rangle = 0, \quad l = x, y, z, \quad \langle J_z^2 \rangle = 0, \quad \langle J_x^2 \rangle = \langle J_y^2 \rangle = \text{large}.
\]

Linear metrology
\[
U = \exp(-iJ_y \theta).
\]

Measure \(\langle J_z^2 \rangle \) to estimate \(\theta \). (We cannot measure first moments, since they are zero.)
We measure $\langle J_z^2 \rangle$ to estimate θ. The precision is given by the error-propagation formula

$$(\Delta \theta)^2 = \frac{(\Delta J_z^2)^2}{|\partial_\theta \langle J_z^2 \rangle|^2}. $$

- Precision as a function of θ for some noisy Dicke state
Formula for maximal precision

\[\tan^2 \theta_{\text{opt}} = \sqrt{\frac{(\Delta J_z^2)^2}{(\Delta J_x^2)^2}}. \]

Consistency check: for the noiseless Dicke state we have \((\Delta J_z^2)^2 = 0\), hence \(\theta_{\text{opt}} = 0\).

Formula for maximal precision II

Maximal precision with a closed formula

\[
(\Delta \theta)^2_{\text{opt}} = 2 \sqrt{\frac{(\Delta J_x^2)^2 (\Delta J_z^2)^2 + 4\langle J_x^2 \rangle - 3\langle J_y^2 \rangle - 2\langle J_z^2 \rangle (1 + \langle J_x^2 \rangle) + 6\langle J_z J_x^2 J_z \rangle}{4(\langle J_x^2 \rangle - \langle J_z^2 \rangle)^2}}.
\]

- Given in terms of collective observables, like spin-squeezing criteria.
- Metrological usefulness can be verified without carrying out the metrological task.

Some things are difficult to measure, they can be bounded

$$\langle J_z J_x^2 J_z \rangle = \frac{\langle J_z (J_x^2 + J_y^2) J_z \rangle}{2} = \frac{\langle J_z (J_x^2 + J_y^2 + J_z^2) J_z \rangle - \langle J_z^4 \rangle}{2} \leq \frac{N(N+2)}{8} \langle J_z^2 \rangle - \frac{1}{2} \langle J_z^4 \rangle.$$

Equality holds for symmetric states.

Experimental test of our formula

- Trying the bound for the experimental data for $N = 7900$ particles

\[
\langle J_Z^2 \rangle = 112 \pm 31, \quad \langle J_Z^4 \rangle = 40 \times 10^3 \pm 22 \times 10^3, \\
\langle J_X^2 \rangle = 6 \times 10^6 \pm 0.6 \times 10^6, \quad \langle J_X^4 \rangle = 6.2 \times 10^{13} \pm 0.8 \times 10^{13}.
\]

- Hence, we obtain

\[
\frac{(\Delta \theta)^{-2}}{N} \geq 3.7 \pm 1.5.
\]

- Remember, for states for at most k-particle entanglement we have

\[
(\Delta \theta)^{-2} \leq F_Q[\rho, J_l] \leq kN.
\]

- Thus, four-particle entanglement is detected for this particular measurement.
For the noiseless Dicke state, the optimal operator to measure is

\[M = J_Z^2. \]

For a noisy Dicke state, this is not true any more. In this case it can happen that

\[(\Delta \theta)^{-2} = \frac{|\partial_\theta \langle J_Z^2 \rangle|^2}{(\Delta J_Z^2)^2} \ll F_Q[\rho, J_y]. \]

We should estimate the quantum Fisher information.
Comparison with the quantum Fisher information II

- **Noisy states**

\[\rho_{\text{th}}(T) \propto \sum_{m=0}^{N} e^{-\frac{(m-N/2)^2}{T}} |D_N^{(m)}\rangle\langle D_N^{(m)}|, \]

- Here \(T = 0 \) perfect symmetric Dicke state, \(T > 0 \) noisy state. \(N = 100 \) particles
Outline

1. Introduction and motivation

2. Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
 - Generalized criteria for $j = \frac{1}{2}$

3. Spin squeezing for Dicke states
 - Entanglement detection close to Dicke states
 - Detection of multipartite entanglement close to Dicke states
 - Our conditions are stronger than the original conditions

4. Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with measuring $\langle J_z^2 \rangle$
 - Metrology with measuring any operator
The quantum Fisher information is the convex roof of the variance

\[F_Q[\rho, A] = 4 \min_{p_k, \psi_k} \sum_k p_k (\Delta A)^2_k, \]

where

\[\rho = \sum_k p_k |\psi_k\rangle\langle \psi_k|. \]

Thus, it is similar to entanglement measures that are also defined by convex roofs.
Legendre transform

- Tight lower bound on a convex function $g(\varrho)$ based on an operator expectation value $w = \langle W \rangle_\varrho = \text{Tr}(W\varrho)$

$$g(\varrho) \geq B(w) := \sup_r \left[rw - \hat{g}(rW) \right],$$

where $w = \text{Tr}(\varrho W)$.

- \hat{g} is the Legendre transform

$$\hat{g}(W) = \sup_{\varrho} \left[\langle W \rangle_\varrho - g(\varrho) \right].$$

- For the quantum Fisher information, we get a tractable optimization since it is given as a convex roof.
Witnessing the quantum Fisher information based on the fidelity

Let us bound the quantum Fisher information based on some measurements. First, consider small systems.

Quantum Fisher information vs. Fidelity with respect to (a) GHZ states and (b) Dicke states for \(N = 4, 6, 12 \).

\[
F_Q = N^2 (1 - 2F_{\text{GHZ}})^2
\]

if \(F_{\text{GHZ}} > \frac{1}{2} \)

[Apellaniz et al., arXiv:1511.05203.]
Bounding the qFi based on collective measurements

Bound for the quantum Fisher information for spin squeezed states (Pezze-Smerzi bound)

\[F[\rho, J_y] \geq \frac{\langle J_z \rangle^2}{(\Delta J_x)^2}. \]

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009).]
Bounding the qFi based on collective measurements II

Optimal bound for the quantum Fisher information $F_Q[\rho, J_y]$ for spin squeezing for $N = 4$ particles

P=fully polarized state, D=Dicke state, C=completely mixed state, M=mixture of $|00..00\rangle_x$ and $|11..11\rangle_x$

[Apellaniz et al., arXiv:1511.05203.]
Bounding the qFi based on collective measurements III

- Optimal bound for the quantum Fisher information $F_Q[\rho, J_y]$ for spin squeezing for $N = 4$ particles

On the bottom part of the figure ($\langle \Delta J_x \rangle^2 < 1$) the bound is very close to the Pezze-Smerzi bound!

[Apellaniz et al., arXiv:1511.05203.]
Spin squeezing experiment

- Experiment with $N = 2300$ atoms,
 \[\xi_s^2 = -8.2\text{dB} = 10^{-8.2/10} = 0.1514. \]

- We choose
 \[\langle J_z \rangle = \alpha \frac{N}{2}, \]
 with $\alpha = 0.85$. (Almost fully polarized.)

- The Pezze-Smerzi bound is:
 \[\frac{\mathcal{F}_Q[q_N, J_y]}{N} \geq \frac{1}{\xi_s^2} = 6.605, \]

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009).]
Solution starting with small systems, using\[
\langle J_z \rangle = \frac{N'}{2} \alpha,
\]
\[
(\Delta J_x)^2 = \xi_s^2 \frac{N'}{4} \alpha^2.
\]
We get 6.605!!

Proof that the formula is optimal, and that our method works.
Project participants

Hannover

L. Santos
G. Vitagliano
W. Ertmer, I. Geisel, J. Peise, S. Coleman
C. Klempt, B. Lücke, J. Mahnke

Bilbao (G.T.)

M. Kleinmann
I.L. Egusquiza
I. Apellaniz

O. Gühne
Siegen
Detection of multipartite entanglement and metrological usefulness close to Dicke states, by measuring collective quantities only.

Lücke, Peise, Vitagliano, Arlt, Santos, GT, Klempt, PRL 112, 155304 (2014) (synopsis at physics.aps.org);
Apellaniz, Lücke, Peise, Klempt, GT, New J. Phys. 17, 083027 (2015);

THANK YOU FOR YOUR ATTENTION!
FOR TRANSPARENCIES, PLEASE SEE www.gtoth.eu.