Detecting k-particle entanglement with spin squeezing inequalities
(a derivation from arxiv:1104.3147,
talk by G. Vitagliano)

G. Tóth1,2,3, G. Vitagliano1, P. Hyllus1, and I.L. Egusquiza1,

1Theoretical Physics, The University of the Basque Country, Bilbao, Spain
2IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3Research Institute for Solid State Physics and Optics, Budapest, Hungary

Siegen, 20 September 2011
Outline

1 Motivation
 Why quantum tomography is important?

2 Multipartite entanglement

3 Quantum experiments with cold gases
 Physical systems
 Collective measurements

4 Spin squeezing inequality for an ensemble of spin-j atoms

5 States maximally violating it

6 Bound for 2-producibility
Why k-particle entanglement is important?

- Many experiments are aiming to create many-body entangled states.
- It is not sufficient to say “entangled”. We have to say something like “genuine multipartite entangled”.
- In experiments with a million atoms, we can only measure collective quantities.

See also
[L.-M. Duan, *Entanglement detection in the vicinity of arbitrary Dicke states*, arXiv:1107.5162],
Genuine multipartite entanglement

Definition

A state is (fully) separable if it can be written as

$$\sum_k p_k \rho_1^{(k)} \otimes \rho_2^{(k)} \otimes \ldots \otimes \rho_N^{(k)}.$$

Definition

A pure multi-qubit quantum state is called biseparable if it can be written as the tensor product of two multi-qubit states

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle.$$

Here $|\psi\rangle$ is an N-qubit state. A mixed state is called biseparable, if it can be obtained by mixing pure biseparable states.

Definition

If a state is not biseparable then it is called genuine multi-partite entangled.
Definition

A pure state is \(k \)-producible if it can be written as

\[
|\Phi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle \otimes |\Phi_3\rangle \otimes |\Phi_4\rangle \ldots
\]

where \(|\Phi_i\rangle \) are states of at most \(k \) qubits. A mixed state is \(k \)-producible, if it is a mixture of \(k \)-producible pure states.

- In many-particle systems where only collective quantities can be detected, this is the only meaningful characterization of entanglement.

- That is, genuine multipartite entanglement is very difficult to detect in such systems.
Outline

1 Motivation
 - Why quantum tomography is important?

2 Multipartite entanglement

3 Quantum experiments with cold gases
 - Physical systems
 - Collective measurements

4 Spin squeezing inequality for an ensemble of spin-\(j\) atoms

5 States maximally violating it

6 Bound for 2-producibility
Physical systems

State-of-the-art in experiments

- 100,000 atoms realizing an array of 1D Ising spin chains (Nature, 2003)
- Spin squeezing with $10^6 - 10^{12}$ atoms (Nature, 2001)

Main challenge

- The particles cannot be addressed individually.
- Only collective quantities can be measured.
- New type of entangled states and entanglement criteria are needed.
Outline

1 Motivation
 - Why quantum tomography is important?

2 Multipartite entanglement

3 Quantum experiments with cold gases
 - Physical systems
 - Collective measurements

4 Spin squeezing inequality for an ensemble of spin-j atoms

5 States maximally violating it

6 Bound for 2-producibility
For spin-$\frac{1}{2}$ particles, we can measure the collective angular momentum operators:

$$J_l := \frac{1}{2} \sum_{k=1}^{N} \sigma_l^{(k)},$$

where $l = x, y, z$ and $\sigma_l^{(k)}$ a Pauli spin matrices.

We can also measure the

$$(\Delta J_l)^2 := \langle J_l^2 \rangle - \langle J_l \rangle^2$$

variances.
For spin-j particles for $j > 1/2$, we can measure the collective angular momentum operators:

$$G_l := \sum_{k=1}^{N} g_l^{(k)},$$

where $l = 1, 2, \ldots, d^2 - 1$ and $g_l^{(k)}$ are the SU(d) generators.

We can also measure the

$$(\Delta G_l)^2 := \langle G_l^2 \rangle - \langle G_l \rangle^2$$

variances.
Only collective measurements are possible

A condition for separability is

\[\sum_k (\Delta G_k)^2 \geq 2N(d - 1). \]

Maximally violating states

For \(N = d \), the multipartite singlet state maximally violates the condition with \(\sum_k (\Delta G_k)^2 = 0 \).

For \(N < d \), there is no quantum states for which \(\sum_k (\Delta G_k)^2 = 0 \).

This can be seen as follows. It is not possible to create a completely antisymmetric state of \(d \)-state particles with less than \(d \) particles.
Maximally violating states II

A more detailed proof: For the sum of the squares of G_k we obtain

$$\sum_k (G_k)^2 = \sum_k \sum_n (g_k^{(n)})^2 + \sum_k \sum_{n \neq m} g_k^{(m)} g_k^{(n)}$$

$$= 2N \frac{d^2 - 1}{d} 1 + \sum_{n \neq m} 2 \left(F_{mn} - \frac{1}{d} \right).$$

Based on this and using $\langle F_{mn} \rangle \geq -1$, we can write

$$\sum_k \langle(G_k)^2\rangle \geq \frac{2N}{d} (d + 1)(d - N).$$

The bound on the right-hand side cannot be zero if $N < d$.

For $N = d$, the sum $\sum_k \langle(G_k)^2\rangle$ is zero for the totally antisymmetric state for which $\langle F_{mn} \rangle = -1$ for all m, n.
Maximally violating states III

It can also be proved that

\[\sum_k \langle G_k^2 \rangle = 0 \iff \sum_k (\Delta G_k)^2 = 0. \]

Two-producibility

We look for the minimum of

$$\sum_k (\Delta G_k)^2 = \sum_k \langle G_k^2 \rangle - \sum_k \langle G_k \rangle^2.$$

Let us see a two-particle system. We will compute the minimum/maximum for both terms.
First term

- First, let us see \[\sum_k \langle G_k^2 \rangle. \]

- We have to consider symmetric and antisymmetric states. The inequality is saturated for symmetric states.
What do we have for antisymmetric states?

\[\sum_k \left\langle G_k^2 \right\rangle = \sum_k \left\langle (g_k^{(1)})^2 \right\rangle + \sum_k \left\langle (g_k^{(2)})^2 \right\rangle + 2 \sum_k \left\langle (g_k^{(1)})(g_k^{(2)}) \right\rangle. \]

Here

\[\left\langle \sum_k (g_k^{(1)})^2 \right\rangle = \left\langle \sum_k (g_k^{(2)})^2 \right\rangle = 2(d + 1)(1 - 1/d). \]

And,

\[\left\langle \sum_k (g_k^{(1)})(g_k^{(2)}) \right\rangle = -2(1 + 1/d). \]

(This is because with the flip operator \(F \) we can be write as \(\sum_k g_k^{(1)} g_k^{(2)} = 2F - \frac{2}{d} \).

Then, we obtain

\[\sum_k \left\langle G_k^2 \right\rangle = 4(d + 1)(1 - 2/d). \]
Then, one has to deal with $\sum_k \langle G_k \rangle^2$. For that, we get
\[
\sum_k \langle G_k \rangle^2 = \sum_k \langle g_k^{(1)} + g_k^{(2)} \rangle^2 = \sum_k \langle g_k^{(1)} \rangle^2 + \sum_k \langle g_k^{(2)} \rangle^2 + 2M,
\]
where
\[
M = \sum_k \langle g_k^{(1)} \rangle \langle g_k^{(2)} \rangle.
\]

Knowing that
\[
\sum_k \langle g_k^{(n)} \rangle^2 \leq 2(1 - 1/d).
\]
and using the Cauchy-Schwarz inequality one gets
\[
\sum_k \langle G_k \rangle^2 \leq 8(1 - 1/d).
\]

Now, we have to use again that for a single qudit
\[
\sum_k \langle g_k^{(n)} \rangle^2 = 2\text{Tr}(\rho^2) - 2/d.
\]
Lemma.

For bipartite antisymmetric states we have

\[\text{Tr}(\rho_{\text{red}}^2) \leq \frac{1}{2}. \]

Proof. All pure two-qudit antisymmetric states can be written in some basis as

\[\alpha_{12}|\psi_{12}^-\rangle + \alpha_{34}|\psi_{34}^-\rangle + \alpha_{56}|\psi_{56}^-\rangle + \ldots, \]

where \(\alpha_{nm} \) are constants and

\[\psi_{mn}^- = (|mn\rangle - |nm\rangle)/\sqrt{2}. \]

Then for the collective operators for antisymmetric states we have

\[\sum_k \langle G_k \rangle^2 \leq 4(1 - 2/d) = 4 - 8/d. \]
Symmetric and antisymmetric states

- Hence, for antisymmetric states, one gets

\[\sum_k (\Delta G_k)^2 \geq 4d(1 - 2/d) = 4(d - 2) = 4d - 8. \]

- For symmetric states, we get

\[\sum_k (\Delta G_k)^2 \geq 4(1 - \frac{1}{d})(2 + d) - 8(1 - 1/d) = 8d(1 - \frac{1}{d}) = 8d - 8. \]

This bound is always larger than the one for antisymmetric states.
Lemma. We know that

\[\sum_k (\Delta G_k)^2 = \sum_k (\Delta G_k)^2_{\rho'} \]

where

\[\rho' = P_a \rho P_a + P_s \rho P_s. \]

It is the same as

\[\rho' = \frac{1}{2}(\rho + F \rho F), \]

where \(F \) is the flip operator. Hence, the coherences between the symmetric and asymmetric parts need not be considered.

Proof. The variance of a collective operator is permutationally invariant.
The criterion

A condition for two-producibility for N qudits of dimension d is

$$\sum_k (\Delta G_k)^2 \geq 2N(d - 2).$$

A condition for separability is

$$\sum_k (\Delta G_k)^2 \geq 2N(d - 1).$$
Summary

- We showed that a certain generalized spin-squeezing inequality can be used to detect three-particle entanglement.
- The inequality detects states close to many-body singlet states.

See:

THANK YOU FOR YOUR ATTENTION!