Permutationally invariant quantum tomography

G. Tóth1,2,3, W. Wieczorek4,5, D. Gross6, R. Krischek4,5, C. Schwemmer4,5, and H. Weinfurter4,5

1Theoretical Physics, The University of the Basque Country, Bilbao, Spain

2Basque Foundation for Science, Bilbao, Spain

3Research Institute for Solid State Physics and Optics, Budapest, Hungary

4Max-Planck-Institut für Quantenoptik, Garching, Germany

5Department für Physik, Ludwig-Maximilians-Universität, München, Germany

6Institute for Theoretical Physics, Leibniz University Hannover, Hannover, Germany

DPG Meeting, Dresden, 15 March 2011
Outline

1 Motivation
 - Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
 - Basic ideas and scaling

3 Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

4 Extra slide 1: Number of settings
Why tomography is important?

- Many experiments aiming to create many-body entangled states.
- Quantum state tomography can be used to check how well the state has been prepared.
- However, the number of measurements scales exponentially with the number of qubits.
Outline

1 Motivation
 - Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
 - Basic ideas and scaling

3 Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

4 Extra slide 1: Number of settings
Physical systems

State-of-the-art in experiments

- **14 qubits with trapped cold ions**

- **10 qubits with photons**

Full tomography:

1 Motivation
 - Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
 - Basic ideas and scaling

3 Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

4 Extra slide 1: Number of settings
Only local measurements are possible

Definition

A single *local measurement setting* is the basic unit of experimental effort.

A local setting means measuring operator $A^{(k)}$ at qubit k for all qubits.

\[
\begin{align*}
A^{(1)} & \quad A^{(2)} & \quad A^{(3)} & \quad \ldots & \quad A^{(N)} \\
\end{align*}
\]

- All two-qubit, three-qubit correlations, etc. can be obtained.

\[
\langle A^{(1)} A^{(2)} \rangle, \langle A^{(1)} A^{(3)} \rangle, \langle A^{(1)} A^{(2)} A^{(3)} \rangle \ldots
\]
Outline

1 Motivation
- Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
- Physical systems
- Local measurements
- Basic ideas and scaling

3 Permutationally invariant tomography
- Main results
- Example: XY PI tomography
- Example: Experiment with a 4-qubit Dicke state

4 Extra slide 1: Number of settings
Approaches to solve the scalability problem

Problem: the number of settings needed for full tomography increases exponentially with the number of qubits.

Possible solutions:

- If the state is expected to be of a certain form (MPS), we can measure the parameters of the ansatz.

- If the state is of low rank, we need fewer measurements.

- We make tomography in a subspace of the density matrices (our approach).
Motivation
- Why quantum tomography is important?

Quantum experiments with multi-qubit systems
- Physical systems
- Local measurements
- Basic ideas and scaling

Permutationally invariant tomography
- Main results
- Example: XY PI tomography
- Example: Experiment with a 4-qubit Dicke state

Extra slide 1: Number of settings
Permutationally invariant part of the density matrix:

\[\rho_{\text{PI}} = \frac{1}{N!} \sum \Pi_k \rho \Pi_k^\dagger, \]

where \(\Pi_k \) are all the permutations of the qubits.

- Related literature: Reconstructing \(\rho_{\text{PI}} \) for spin systems.

- Photons in a single mode optical fiber are always in a permutationally invariant state. Small set of measurements are needed for their characterization (experiments).
Main results

Features of our method:

1. Is for spatially separated qubits.
2. Needs the minimal number of measurement settings.
3. Uses the measurements that lead to the smallest uncertainty possible of the elements of ρ_{PI}.
4. Gives an uncertainty for the recovered expectation values and density matrix elements.
5. If ρ_{PI} is entangled, so is ρ. Can be used for entanglement detection!
Measurements

- We measure the same observable A_j on all qubits. (Necessary for optimality.)

- Each qubit observable is defined by the measurement directions \vec{a}_j using $A_j = a_{j,x}X + a_{j,y}Y + a_{j,z}Z$.

Number of measurement settings:

$$D_N = \binom{N+2}{N} = \frac{1}{2}(N^2 + 3N + 2).$$
What do we get from the measurements?

We obtain the expectation values for

$$\langle (A_j^{\otimes (N-n)} \otimes 1^{\otimes n})_{PI} \rangle$$

for $j = 1, 2, .., D_N$ and $n = 0, 1, ..., N$.

How do we obtain the Bloch vector elements?

A Bloch vector element can be obtained as

$$\langle (X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes 1^{\otimes n})_{\text{PI}} \rangle = \sum_{j=1}^{D_N} c_j^{(k,l,m)} \times \langle (A_j^{\otimes (N-n)} \otimes 1^{\otimes n})_{\text{PI}} \rangle.$$

- Coefficients are not unique if $n > 0$.
The uncertainty of the reconstructed Bloch vector element is

$$\mathcal{E}^2[(X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes 1^{\otimes n})_{\text{PI}}] = \sum_{j=1}^{D_N} |c^{(k,l,m)}_j| \mathcal{E}^2[(A_j^{\otimes (N-n)} \otimes 1^{\otimes n})_{\text{PI}}].$$

For a fixed set of A_j, we have a formula to find the $c^{(k,l,m)}_j$’s giving the minimal uncertainty.
Optimization for A_j

We have to find D_N measurement directions \vec{a}_j on the Bloch sphere minimizing the variance

$$(\mathcal{E}_{\text{total}})^2 = \sum_{k+l+m+n=N} \mathcal{E}^2 \left[(X^\otimes k \otimes Y^\otimes l \otimes Z^\otimes m \otimes 1^\otimes n)_{\Pi} \right] \times \left(\frac{N!}{k!l!m!n!} \right).$$
Summary of algorithm

Obtaining the "total uncertainty" for given measurements

\[\rho_0, \quad \text{the state we expect} \]
\[A_j, \quad \text{what we measure} \]

\[\Rightarrow \quad \text{BOX #1} \quad \Rightarrow \quad (\epsilon_{\text{total}})^2 \]

Evaluating the experimental results

\[\text{measurement results} \]
\[A_j \]

\[\Rightarrow \quad \text{BOX #2} \quad \Rightarrow \quad \left\{ \begin{array}{l} \text{Bloch vector elements} \\ \text{variances} \end{array} \right\} \]
How much is the information loss?

Estimation of the fidelity $F(\varrho, \varrho_{PI})$:

$$F(\varrho, \varrho_{PI}) \geq \langle P_s \rangle_\varrho^2 = \langle P_s \rangle_{\varrho_{PI}}^2,$$

where P_s is the projector to the N-qubit symmetric subspace.

- $F(\varrho, \varrho_{PI})$ can be estimated only from ϱ_{PI}!

Proof: using the theory of angular momentum for qubits.

Similar formalism appear concerning handling multi-copy qubit states:

Outline

1 Motivation
 - Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
 - Basic ideas and scaling

3 Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

4 Extra slide 1: Number of settings
Let us assume that we want to know only the expectation values of operators of the form

$$\langle A(\phi)^{\otimes N} \rangle$$

where

$$A(\phi) = \cos(\phi)\sigma_x + \sin(\phi)\sigma_y.$$

The space of such operators has dimension $N + 1$. We have to choose $\{\phi_j\}_{j=1}^{N+1}$ angles for the $\{A_j\}_{j=1}^{N+1}$ operators we have to measure.
Let us assume that we measure
\[\langle A_j^{\otimes N} \rangle \]
for \(j = 1, 2, ..., N + 1 \).

Reconstructed values and uncertainties
\[\langle A(\phi) \otimes^N \rangle = \sum_{j=1}^{N+1} c_j^{(\phi)} \times \langle A_j^{\otimes N} \rangle. \]

Reconstructed coefficients \(c_j^{(\phi)} \) \times \text{Measured data} \]

Let us assume that all of these measurements have a variance \(\Delta^2 \).
Simple example: XY PI tomography III

- Numerical example for \(N = 6 \).

Random directions \(\phi_j \)
Uncertainty of \(A(\phi)^\otimes N \)
Uniform directions
Numerical example for $N = 6$. This random choice is even worse ...

Random directions ϕ_j
Uncertainty of $A(\phi)^{\otimes N}$
Uniform directions
Outline

1. Motivation
 - Why quantum tomography is important?

2. Quantum experiments with multi-qubit systems
 - Physical systems
 - Local measurements
 - Basic ideas and scaling

3. Permutationally invariant tomography
 - Main results
 - Example: XY PI tomography
 - Example: Experiment with a 4-qubit Dicke state

4. Extra slide 1: Number of settings
4-qubit Dicke state, optimized settings (exp.)

*** NEXT TALK by Christian Schwemmer ***
We determined the optimal A_j for p.i. tomography for $N = 4, 6, ..., 14$. The maximal squared uncertainty of the Bloch vector elements is

$$\epsilon_{\text{max}}^2 = \max_{k,l,m,n} \mathcal{E}^2[\left(X^{\otimes k} \otimes Y^{\otimes l} \otimes Z^{\otimes m} \otimes \mathbb{I}^{\otimes n} \right)_{\text{PI}}]$$

(Total count is the same as in the experiment: 2050.)
Operator expectation values can be recovered directly from the measurement data as

$$\langle Op \rangle = \sum_{j=1}^{D_N} \sum_{n=1}^{N} c_{j,n}^{Op} \langle (A_j^{\otimes (N-n)} \otimes \mathbb{I}^\otimes n)_{PI} \rangle,$$

where the $c_{j,n}^{Op}$ are constants.

$Op = |D_N^{(N/2)} \rangle \langle D_N^{(N/2)}|$, blue: $\varrho_0 \propto \mathbb{I}$, red: upper bound for any ϱ_0.

![Graph showing expected results with N on the x-axis and ξ on the y-axis, with blue and red markers representing different conditions.](image-url)
Comparison with other methods for efficient tomography

- If a state is detected as entangled, it is surely entangled. No assumption is used concerning the form of the quantum state.

- Expectation values of all permutationally invariant operators are the same for ρ and ρ_{PI}.

- Typically, it can be used in experiments in which permutationally invariant states are created.
Participants in the project

Harald Weinfurter
MPQ, Munich

Roland Krischek
MPQ, Munich

Witlef Wieczorek
 MPQ, Munich
(now in Vienna)

David Gross
 Hannover
(now in Zürich)

Christian Schwemmer
MPQ, Munich

Géza Tóth
 Bilbao

Witlef Wieczorek
MPQ, Munich

Christian Schwemmer
MPQ, Munich

Géza Tóth
 Bilbao
Summary

- We discussed permutationally invariant tomography for large multi-qubits systems.
- It paves the way for quantum experiments with more than 6 – 8 qubits.

See:

THANK YOU FOR YOUR ATTENTION!
How many settings we need?

- Expectation values of \((X^\otimes k \otimes Y^\otimes l \otimes Z^\otimes m \otimes 1^\otimes n)_{PI}\) are needed.

- For a given \(n\), the dimension of this subspace is \(D_{(N-n)}\) (simple counting).

- Operators with different \(n\) are orthogonal to each other.

- Every measurement setting gives a single real degree of freedom for each subspace.

- Hence the number of settings cannot be smaller than the largest dimension, which is \(D_N\).